Discrete total variation calculus and Lee's discrete mechanics

نویسندگان

  • Jing-Bo Chen
  • Han-Ying Guo
  • Ke Wu
چکیده

A discrete total variation calculus is presented in this paper. Using this calculus, we prove that the solution of the system of difference equations in Lee s discrete mechanics preserves a symplectic structure in the space–time sense. Numerical experiments are also reported. 2005 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Variation and Variational Symplectic-Energy- Momentum integrators

In 1980’s, Lee proposed an energy-preserving discrete mechanics with variable time steps by taking (discrete) time as dynamical variable [2, 3, 4]. On the other hand, motivated by the symplectic property of Lagrangian mechanics, a version of discrete Lagrangian mechanics has been devoloped and variational integrators that preserve discrete symplectic two form have been obtained [11, 12, 15, 16,...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Invariant functions for solving multiplicative discrete and continuous ordinary differential equations

In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...

متن کامل

Discrete Calculus of Variation for Homographic Configurations in Celestial Mechanics

We provide in this paper the discrete equations of motion for the newtonian n-body problem deduced from the quantum calculus of variations (Q.C.V.) developed in [3, 4, 7, 8]. These equations are brought into the usual lagrangian and hamiltonian formulations of the dynamics and yield sampled functional equations involving generalized scale derivatives. We investigate especially homographic solut...

متن کامل

Positive solutions for discrete fractional initial value problem

‎‎In this paper‎, ‎the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement‎ .‎The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2006